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Comparing shapes, understanding evolution
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T
he study of shape has intrigued
some of the brightest minds of
humanity, from Leonardo Da
Vinci and Carl Friedrich Gauss

to some of the top scientists of the modern
era. The mathematics to analyze shapes
are both beautiful and challenging, cover-
ing a variety of tools, from topology (1), to
metric and differential geometry (2, 3),
to statistics (4). The applications are very
diverse and potentially life-changing, and
they range from brain research to struc-
tural biology and archeology. At the core
of this research area is shape comparison:
determining how to match, compare,
and compute the distance between pairs of
shapes. This is the topic addressed by the
work of Boyer et al. (5) in PNAS, with
a unique interdisciplinary team of anthro-
pologists, archaeologists, computer scien-
tists, and mathematicians.
Understanding why comparing shapes is

so important is better illustrated with a
number of examples. Let us start with
brain research, where, for example, we are
interested in investigating how the brain
changes as we grow (6) or how a normal
brain compares with that of a patient who
has Alzheimer’s disease. In this case, the
shapes can be obtained from MRI and
can, for example, represent the gray-white
matter boundary, thereby challenging us
to find maps and distances between such
2D surfaces (7). In HIV research in
structural biology, data can be obtained via
cryotomography, and it is important to
understand the underlying shape of the
envelope glycoproteins that mediate virus
binding to initiate infection and how this
shape changes, for example, in the pres-
ence of antibodies, information critical for
the development of a vaccine. Shape
comparison and matching are fundamen-
tal to compute the conformations of such
protein complexes (8). Boyer et al. (5)
present unique applications in anthropol-
ogy, archeology, and evolution, as dis-
cussed below. Let us not forget that our
surrounding world is composed of shapes
and that shape analysis is critical to navi-
gate it as well as to develop automatic
systems capable of emulating basic human
performance, such as answering the simple
question “Is this a chair?”.
Comparing shapes is difficult because of

the intrinsic complexity of shapes in nature
(e.g., proteins, human brains) as well as
the large variability encountered within
shape classes. Although simple character-
istics to compare shapes, such as volume,
can already provide valuable information,

more sophisticated features and distances
are needed most often. These distances
can be derived following the computation
of a correspondence between the shapes:
a map between points in the shapes being
compared. Computing such correspon-
dence, and, from it, distances, is the es-
sence of the work of Boyer et al. (5) and of
much of the literature in this area in recent
years (finding correspondence has appli-
cations beyond shape comparison and is
critical, for example, in morphing, as ex-
emplified by the famous Michael Jackson
musical video Black or White).
Finding an appropriate correspondence

between shapes is often addressed by
considering a discrete set of landmarks or
corresponding points or curves. This ap-
proach is common, for example, in Pro-
crustes analysis, a form of statistical shape
analysis that derives its name from the
mythological Greek rogue who made his
victims fit his bed by stretching their limbs
or cutting them off, and has been very
popular in brain matching (7). Some
landmarks might be natural for some
classes of shapes (e.g., tip of the nose for
faces) but are not for others. Even if they
are easy to define and universally accept-
able by the corresponding community
(which is often not the case), marking
them requires having experts in the field or
developing advanced computational tech-
niques (which are often problematic by
themselves); is very time-consuming, and
thereby forbidden for large datasets; is
subject to much subjectivity in their se-
lection; and is also prone to errors and
contamination. Avoiding landmarks alto-
gether is thereby desirable, as done by
Boyer et al. (5) based on a combination of
beautiful and computable mathematical
structures, including Monge–Kantorovitch
mass transportation theory and conformal
maps. The Monge–Kantorovitch theory
follows from work of the French mathe-
matician Gaspard Monge 3 centuries ago
and the Soviet mathematician Leonid
Kantorovitch in the past century, and it
relates to the study of optimal trans-
portation and resources allocation prob-
lems. Conformal maps are angle-pre-
serving and are familiar to the readers
because they are often used in cartography
to map the round earth onto the plane.

Fig. 1. Finding corresponding/matching points be-
tween shapes is a very challenging problem and is
critical for a number of applications (A, with kind
permission from Springer Science+Business Media:
International Journal of Computer Vision, A Gro-
mov-Hausdorff framework with diffusion geometry
for topologically-robust non-rigid shape matching,
Vol 89, 2009, pp 266–286, A. M. Bronstein, M. M.
Bronstein, M. Mahmoudi, R. Kimmel, and G. Sapiro,
Fig. 11; B, manufactured by Plan Toys, Thailand).
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It is interesting to see how old theories and
practices come back to life in modern
mathematics and applications.
Boyer et al. (5) derive, via energy/

variational formulations, an extension of
the conformal Wasserstein distance, which
is the mass transport problem for the
conformal factors (area distortions pro-
duced by the conformal maps) corre-
sponding to two given surfaces. This
modification, based on performing local
computations, is necessary, in part, be-
cause the original classic formulation is
computationally very complex. This newly
developed computationally feasible
neighborhood distance has interesting
properties demonstrated in complemen-
tary theoretical supporting information
provided by the authors.
The proposed neighborhood conformal

Wasserstein distance is isometric-in-
variant, meaning it is intrinsic and in-
variant to bends and it preserves distances
on the surface, suitable for deformations,
such as those in Fig. 1A. A different dis-
tance, the continuous Procrustes distance,
is investigated, which is also landmark-free
and considers extrinsic properties more
suitable for rigid matches, such as those in
Fig. 1B. The interplay between intrinsic
and extrinsic properties of shapes is an
active area of research, and it has often
been demonstrated that both classes of
maps are important.
The beautiful mathematical entities de-

veloped and studied by Boyer et al. (5)
would have limited value if they were not
efficiently computable. To complete the
technical contribution of the work, the

authors study such issues. In particular,
they show that by limiting the space over
which the optimization is performed, very
efficient algorithms can be developed.
In the companion theoretical paper and
supporting information, they carefully an-
alyze the bounded differences obtained by

Boyer et al. present

unique applications in

anthropology, archeology,

and evolution.

such optimization-motivated restriction,
showing that it does not hurt; computa-
tional details are also provided in the
supporting information.
Boyer et al. (5) apply these mathemati-

cal and computational developments in
three different teeth and bone datasets of
human and nonhuman skeletal anatomy,
presenting a real application in compara-
tive and evolutional morphology. Digitized
2D surfaces embedded in three dimen-
sions were obtained from high-resolution
X-ray computed tomography scans of 116
second mandibular molars of prosimian
primates and nonprimate close relatives;
57 proximal first metatarsals of prosimian
primates, New and Old World monkeys;
and 45 distal radii of apes and humans.
For every pair of surfaces, the proposed
algorithms provide the correspondence
map and a nonnegative number giving
their distance or dissimilarity. The results

of these automatic algorithms are com-
pared with standard tools used by mor-
phologists. The comparisons are done at
both the quantitative level (Mantel signif-
icance) and qualitative level (observing
symmetry in combined distance matrices).
In addition, Boyer et al. (5) perform

a taxonomic classification task and show
that their automatic continuous Procrustes
distance performs as well as the standard
manual (landmark-based) one. Finally,
because their automatic matching tech-
nique provides the actual map and not just
the distance, they compare the manual
landmarks with those obtained by their
technique, showing once again the value
and accuracy of their automatic frame-
work. Beyond this, the automatic and ob-
jective propagation of landmarks via the
computed maps can shed some light on
comparative morphology and the evolu-
tionary relatedness among groups of
organisms, as illustrated by Boyer et al. (5)
with a study of different alternative evo-
lution paths among different taxonomic
groups. The study concentrates on map-
ping landmarks from a Microcebus tooth
onto a Lepilemur tooth, showing possible
direct and indirect evolutionary paths.
The work by Boyer et al. (5) has the

added value of serving as an example
of interdisciplinary research, with con-
tributions and motivations from multiple
disciplines. As such, it opens the door to
applications of the proposed shape dis-
tances and matching techniques in other
areas of science, as well as to additional
mathematical questions coming from
evolutional morphology.
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